Edexcel Maths C1

Topic Questions from Papers

Coordinates

8.	The line l_1 passes through the point $(9, -4)$ and has gradient $\frac{1}{3}$.					
	(a) Find an equation for l_1 in the form $ax + by + c = 0$, where a , b and c are integers. (3)					
	The line l_2 passes through the origin O and has gradient -2 . The lines l_1 and l_2 intersect at the point P .					
	(b) Calculate the coordinates of P . (4)					
	Given that l_1 crosses the y-axis at the point C ,					
	(c) calculate the exact area of $\triangle OCP$. (3)					
_						
_						
_						
_						
_						
_						

stion 8 continued	

10. The curve *C* has equation $y = \frac{1}{3}x^3 - 4x^2 + 8x + 3$.

The point P has coordinates (3, 0).

(a) Show that P lies on C.

(1)

(b) Find the equation of the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants.

(5)

Another point Q also lies on C. The tangent to C at Q is parallel to the tangent to C at P.

(c) Find the coordinates of Q.

(5)

		_
		_
		_
		_
	(Total 11 marks	e)

Le	ea	ve
hl	ar	ık

The line L has equation $y = 5 - 2x$.	
(a) Show that the point $P(3, -1)$ lies on L .	
(b) Find an equation of the line perpendicular to L , which passes through P . Give answer in the form $ax + by + c = 0$, where a , b and c are integers.	y

Q3

(Total 5 marks)

Figure 2

Leave blank

9.

Figure 2 shows part of the curve C with equation

$$y = (x - 1)(x^2 - 4)$$
.

The curve cuts the x-axis at the points P, (1, 0) and Q, as shown in Figure 2.

(a) Write down the x-coordinate of P, and the x-coordinate of Q.

(2)

(b) Show that $\frac{dy}{dx} = 3x^2 - 2x - 4$.

(3)

(c) Show that y = x + 7 is an equation of the tangent to C at the point (-1, 6).

(2)

The tangent to C at the point R is parallel to the tangent at the point (-1, 6).

(d) Find the exact coordinates of R.

(5)

Question 9 continued		Leave
		Q9
	(Total 12 marks)	

L	ea	ν	e
h	โลเ	n	k

11.	. The line l_1 passes through the points $P(-1, 2)$ and $Q(11, 8)$.				
	(a) Find an equation for l_1 in the form $y = mx + c$, where m and c are constants.	(4)			
	The line l_2 passes through the point $R(10, 0)$ and is perpendicular to l_1 . The lines l_1 and intersect at the point S .	$1 l_2$			
	(b) Calculate the coordinates of <i>S</i> .	(5)			
	(c) Show that the length of RS is $3\sqrt{5}$.	(2)			
	(d) Hence, or otherwise, find the exact area of triangle <i>PQR</i> .	(4)			

estion 11 continued			
	momit no	(Total 15 marks)	
	TOTAL FOR	R PAPER: 75 MARKS	

7. The curve C has equation y = f(x), $x \ne 0$, and the point P(2, 1) lies on C. Given that

$$f'(x) = 3x^2 - 6 - \frac{8}{x^2} ,$$

(a) find f(x).

(5)

(b)	Find an equation for the tangent to C at the point P , giving your answer in the form
	y = mx + c, where m and c are integers.

y = mx + c, where m and c are integers.	
	(4)
	, ,

10

- **8.** The curve *C* has equation $y = 4x + 3x^{\frac{3}{2}} 2x^2$, x > 0.
 - (a) Find an expression for $\frac{dy}{dx}$.

(3)

(b) Show that the point P(4, 8) lies on C.

(1)

(c) Show that an equation of the normal to C at the point P is

$$3y = x + 20$$
.

(4)

The normal to C at P cuts the x-axis at the point Q.

(d) Find the length PQ, giving your answer in a simplified surd form.

(3)

Question 8 continued	
	 Q

10. The curve C has equation $y = x^2(x-6) + \frac{4}{x}$, x > 0.

The points *P* and *Q* lie on *C* and have *x*-coordinates 1 and 2 respectively.

(a) Show that the length of PQ is $\sqrt{170}$.

(4)

(b) Show that the tangents to C at P and Q are parallel.

(5)

(c) Find an equation for the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

18

Question 10 continued	Leave

The line l_1 has equation $y = 3x + 2$ and the line l_2 has equation $3x + 2y - 8 = 0$	
(a) Find the gradient of the line l_2 .	
	(2)
The point of intersection of l_1 and l_2 is P .	
(b) Find the coordinates of <i>P</i> .	
	(3)
The lines l_1 and l_2 cross the line $y = 1$ at the points A and B respectively.	
(c) Find the area of triangle <i>ABP</i> .	
	(4)

22

	(Total 9 marks)	Q1

H 2 6 1 0 7 A 0 2 4 2 4

The point A (-6, 4) and the point B (8, -3) lie on the line L .	
(a) Find an equation for L in the form $ax + by + c = 0$, where a, b and c are integers.	(4)
(b) Find the distance AB , giving your answer in the form $k\sqrt{5}$, where k is an integer.	(3)

10.

Figure 2

The points Q(1, 3) and R(7, 0) lie on the line l_1 , as shown in Figure 2.

The length of QR is $a\sqrt{5}$.

(a) Find the value of a.

(3)

The line l_2 is perpendicular to l_1 , passes through Q and crosses the y-axis at the point P, as shown in Figure 2.

Find

(b) an equation for l_2 ,

(5)

(c) the coordinates of P,

(1)

(d) the area of ΔPQR .

Question 10 continued	blan

- **10.** The line l_1 passes through the point A (2, 5) and has gradient $-\frac{1}{2}$.
 - (a) Find an equation of l_1 , giving your answer in the form y = mx + c. **(3)**

The point B has coordinates (-2, 7).

- (b) Show that B lies on l_1 . **(1)**
- (c) Find the length of AB, giving your answer in the form $k\sqrt{5}$, where k is an integer. **(3)**

The point C lies on l_1 and has x-coordinate equal to p.

The length of AC is 5 units.

(d) Show that p satisfies

$$p^2 - 4p - 16 = 0.$$

Question 10 continued		Leave blank
		Q10
		Q10
	(Total 11 marks)	

8.

Figure 1

The points A and B have coordinates (6, 7) and (8, 2) respectively.

The line l passes through the point A and is perpendicular to the line AB, as shown in Figure 1.

(a) Find an equation for l in the form ax + by + c = 0, where a, b and c are integers.

(4)

Given that l intersects the y-axis at the point C, find

(b) the coordinates of C,

(2)

(c) the area of $\triangle OCB$, where O is the origin.

(2)

uestion 8 continued	blan

() T' 14 1' (C)	
(a) Find the gradient of l_1 .	(2)
The line l_2 is perpendicular to l_1 and passes through the point $(3, 1)$.	
(b) Find the equation of l_2 in the form $y = mx + c$, where m and c are constant	ts. (3)

I	.(2	ď	V	e
ŀ	١,	a	r	١1	~

9. (a) Factorise completely $x^3 - 4x$

(3)

(b) Sketch the curve C with equation

$$y = x^3 - 4x,$$

showing the coordinates of the points at which the curve meets the *x*-axis.

(3)

The point A with x-coordinate -1 and the point B with x-coordinate 3 lie on the curve C.

(c) Find an equation of the line which passes through A and B, giving your answer in the form y = mx + c, where m and c are constants.

(5)

(d) Show that the length of *AB* is $k\sqrt{10}$, where k is a constant to be found.

(2)

	Leave
Question 9 continued	blank
Question 3 continued	

8.	(a) Find an equation of the line joining $A(7, 4)$ and $B(2, 0)$, giving your answer form $ax+by+c=0$, where a , b and c are integers.	
		(3)
	(b) Find the length of AB , leaving your answer in surd form.	(2)
	The point C has coordinates $(2, t)$, where $t > 0$, and $AC = AB$.	
	(c) Find the value of t .	(1)
	(d) Find the area of triangle <i>ABC</i> .	(2)
_		

	Leave
	blank
Question 8 continued	

9.	The line L_1 has equation $2y-3x-k=0$, where k is a constant.	
	Given that the point A (1,4) lies on L_1 , find	
	(a) the value of k ,	1)
	(b) the gradient of L_1 .	2)
	The line L_2 passes through A and is perpendicular to L_1 .	
	(c) Find an equation of L_2 giving your answer in the form $ax + by + c = 0$, where a , b as c are integers.	nd
		4)
	The line L_2 crosses the x-axis at the point B.	
	(d) Find the coordinates of B .	2)
	(e) Find the exact length of AB.	2)
		_
		_
		_
		_
		_
		_
		_
		_
		_

	Leave
	blank
Question 9 continued	

3.	The points P and Q have coordinates $(-1, 6)$ and $(9, 0)$ respectively.			
	The line l is perpendicular to PQ and passes through the mid-point of PQ .			
	Find an equation for l , giving your answer in the form $ax + by + c = 0$, where a , b and c are integers.			
	(5)			

6.

Figure 1

The line l_1 has equation 2x-3y+12=0

(a) Find the gradient of l_1 .

(1)

The line l_1 crosses the x-axis at the point A and the y-axis at the point B, as shown in Figure 1.

The line l_2 is perpendicular to l_1 and passes through B.

(b) Find an equation of l_2 .

(3)

The line l_2 crosses the x-axis at the point C.

(c) Find the area of triangle ABC.

	Leav
	blan
Question 6 continued	

10.

Figure 2

Figure 2 shows a sketch of the curve C with equation

$$y = 2 - \frac{1}{x}, \quad x \neq 0$$

The curve crosses the x-axis at the point A.

(a) Find the coordinates of A.

(1)

(b) Show that the equation of the normal to C at A can be written as

$$2x + 8y - 1 = 0 ag{6}$$

The normal to C at A meets C again at the point B, as shown in Figure 2.

(c) Find the coordinates of B.

Question 10 continued		Leave blank
		Q10
	(Total 11 marks)	
	TOTAL FOR PAPER: 75 MARKS	
EN	ND	

9. The line L_1 has equation 4y + 3 = 2x

The point A(p, 4) lies on L_1

(a) Find the value of the constant p.

(1)

The line L_2 passes through the point C(2, 4) and is perpendicular to L_1

(b) Find an equation for L_2 giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(5)

The line L_1 and the line L_2 intersect at the point D.

(c) Find the coordinates of the point D.

(3)

(d) Show that the length of *CD* is $\frac{3}{2}\sqrt{5}$

(3)

A point *B* lies on L_1 and the length of $AB = \sqrt{(80)}$

The point E lies on L_2 such that the length of the line CDE = 3 times the length of CD.

(e) Find the area of the quadrilateral *ACBE*.

(3)

Overtion 0 continued]
Question 9 continued	

5.	The line l_1 has equation $y = -2x + 3$
	The line l_2 is perpendicular to l_1 and passes through the point (5, 6).
	(a) Find an equation for l_2 in the form $ax + by + c = 0$, where a , b and c are integers. (3)
	The line l_2 crosses the x-axis at the point A and the y-axis at the point B.
	(b) Find the <i>x</i> -coordinate of <i>A</i> and the <i>y</i> -coordinate of <i>B</i> . (2)
	Given that <i>O</i> is the origin,
	(c) find the area of the triangle <i>OAB</i> . (2)

westion 5 continued	b
uestion 5 continued	

4.						
	(a) Find the gradient of L_1 .	(2)				
	The line L_2 is perpendicular to L_1 and passes through the point $(2, 5)$.					
	(b) Find the equation of L_2 in the form $y = mx + c$, where m and c are constants.	(3)				

- **6.** The straight line L_1 passes through the points (-1,3) and (11,12).
 - (a) Find an equation for L_1 in the form ax + by + c = 0,

(4)

The line L_2 has equation 3y + 4x - 30 = 0.

where a, b and c are integers.

(b) Find the coordinates of the point of intersection of L_1 and L_2 .

(3)

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$